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Transient Coupled Heat Transfer in Multilayer
Non-gray Semitransparent Media with Reflective Foils
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In this paper, transient coupled radiative and conductive heat transfer in mul-
tilayer thermal insulation (MTI), which consists of non-gray semitransparent
materials and reflective foils, is investigated for re-entry aerodynamic heating.
The governing equation for combined radiation and conduction heat trans-
fer in MTI is solved using a finite volume numerical method, whereas the
radiative transfer equation (RTE) is solved using a finite difference method,
in which the spectral scattering and absorption coefficients are determined
using the Mie theory and the scattering phase function is modeled by the
Delta-Eddington approximation. A comparison is carried out between numer-
ical results for coupled heat transfer in non-gray MTI and those obtained by
the two-flux model in which the medium is assumed to be gray. Finally, the
numerical optimization of MTI is discussed.

KEY WORDS: multilayer thermal insulation; non-gray semitransparent media;
radiative transfer equation; reflective foils.

1. INTRODUCTION

To maintain appropriate temperatures for equipment, payloads, and
structures during re-entry aerodynamic heating, an efficient thermal pro-
tection system (TPS) is required. Metallic thermal protection systems have
been developed for intended use on major portions of reusable launch
vehicles. The use of high temperature multilayer insulation in this kind
of thermal protection system is investigated in the present study. The
multilayer insulation consists of thin ceramic or composite foils with
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a high reflectance metal coating separated by fibrous insulation spacers
as described in Ref. 1. The fibrous insulation spacers are made of a
low-density, low-thermal-conductivity material, such as high-purity silica
fiber, high-purity alumina fiber [2, 3], etc.

Heat transfer in multilayer insulation involves combined modes of
heat transfer: solid conduction through fibers, gas conduction and natu-
ral convection in spaces between fibers, and radiation interchange in the
fibrous insulation. In the present study gas natural convection was not
considered. As most of the materials that exchange heat by means of radi-
ation are non-gray, one must take into account the wavelength depen-
dence. The radiative properties (the complex optical index or emissivity)
of non-gray media vary with wavelength, while those of gray media are
independent of wavelength. In this context the term gray is employed to
connote the fact that the material is completely nonselective in its spec-
tral characteristics. There are very few materials for which the emissivity is
constant over the entire range of wavelengths. In spite of this fact, many
materials can be considered to be approximately gray bodies. However,
materials, which exchange heat by means of radiation in high-temperature
multilayer insulation with reflective foils need to be more accurately char-
acterized because radiation is significant at high temperatures. The situa-
tion described above not only contributes to the design for TPS but also
to the choice of materials for TPS. The appropriate design and use of
high-performance materials will enhance the payload of reusable launch
vehicles. In fact, a series of the effects on the design for TPS, caused
by the assumption in which a non-gray material is considered to be an
approximately gray material, is also of interest to most engineers.

The objective of this paper is to compare the numerical results
obtained for non-gray fibrous insulation with those obtained for fibrous
insulation assumed as gray material by the use of appropriate numeri-
cal heat transfer models. Modeling for non-gray media is characterized by
solving the radiative transfer equation (RTE), while the modeling for gray
media is characterized by the two-flux approximation.

2. DESCRITPION OF MULTILAYER INSULATION
FOR RE-ENTRY AERODYNAMIC HEATING

In this study the investigated multilayer insulation consisted of reflec-
tive foils separated by layers of silica fibrous insulation. It had five
304.8 mm × 304.8 mm × 0.0404 mm gold-coated foils with a density of
1343 kg · m−3. The four interior fibrous insulation spacers were 3.78 mm
thick with a density of 20 kg · m−3, while the two outer fibrous insulation
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spacers were 1.80 mm thick with the same density. The height of the
insulation sample, combined foils and spacers, was 18.92 mm. The multi-
layer insulation was wrapped in a 0.43 mm thick Nextel bag. A schematic
of the multilayer sample is shown in Fig. 1.

The fibrous insulation spacers were made of randomly oriented silica
fibers with a diameter of 7 µm. The typical values of nλ and kλ for silica
are presented in Ref. 4 and described in Fig. 2. From Fig. 2, the variation
of the optical properties of silica fibers with wavelength showed that the
silica fibrous insulation is non-gray.
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Fig. 1. Schematic of the multilayer insulation.

Fig. 2. Silica optical properties.
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3. HEAT TRANSFER MODEL

The governing conservation of energy equation for the problem of
combined radiation and conduction in a radiation participating media
with a thickness E bounded by two solid surfaces at specified tempera-
tures is given by [5]

ρCp
∂T (y,t)

∂t
− ∂

∂y

(
k (T (y, t))

∂T (y,t)
∂y

)
=Sr (y, t) (1)

Sr (y, t)=− ∂Qr (y,t)
∂y

(2)

subject to the following initial and boundary conditions:

T (y,0)=To (3)

T (0, t)=T1(t) (4)

T (E, t)=T2(t) (5)

where T is the temperature, ρ is the density, CP is the specific heat, k(T )

is the thermal conductivity, Sr(y, t) is the radiative source term, Qr(y, t) is
the radiant heat flux, t is the time, and y is the spatial coordinate through
the insulation thickness. For this application, ρ = 20 kg · m−3 and CP =
670 J ·kg−1 ·K−1.

The radiant heat flux is given by

Qr (y, t)=2π

∞∫

λ=0

1∫

µ=−1

Iλ (y,µ, t)µdµdλ (6)

and Iλ(y,µ, t) is determined from RTE as described below. The conduc-
tive heat flux is defined by

Qc(y, t)=−k(T (y, t))
dT (y, t)

dy
∀0<y <E (7)

In Eqs. (1) and (7), k(T ) is the thermal conductivity which depends on
temperature. The function of the thermal conductivity of fibrous insula-
tion made up of the silica fibers and air is derived using the Langlais and
Klarsfeld semi-empirical relation [6].

k(T )=2.572×10−4T 0.81 +5.27×10−5ρ0.91(1+1.3×10−3T ) (8)

where T is the temperature and ρ is the density of the fibrous insula-
tion, which is 20 kg · m−3 in this study. This relation corresponds to the
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heat transfer through the thickness of the insulator and takes into account
the air and glass fiber conduction as well as contacts between fibers. The
validity range of this relation is for temperatures from approximately 273
to 1000 K. This relation is used over the entire temperature range in the
present application.

The total heat flux is given by the sum of radiative and conductive
heat fluxes,

Qt(y, t)=Qc(y, t)+Qr(y, t) (9)

For a non-grey absorbing, emitting, and anisotropic scattering medium of
thickness E, assuming heat transfer in the y-direction, with an axial sym-
metry, the RTE [7] is described as

1
c

∂Iλ (y,µ, t)

∂t
+µ

∂Iλ (y,µ, t)

∂y

=−βλ (µ) Iλ (y,µ, t)+σaλ (µ) Ib,λ (T (y, t))

+1
2

1∫

µ′=−1

σsλ

(
µ′)�λ

(
µ′ →µ

)
Iλ

(
y,µ′, t

)
dµ′ (10)

for all 0<y <E, µ∈ [−1,0)∪ (0,1] , λ>0. The coefficient c is the velocity
of light in the medium of interest through which the radiation travels (c=
2.998 × 108 m · s−1); thus, the term 1/c∂Iλ (y,µ, t)/∂t in the equation can
be neglected in comparison to other terms. The coefficient µ is the cosine
of the polar angle between the direction of propagation and transfer. In
Eq. (10), the terms on the right-hand side describe, respectively, the extinc-
tion phenomena, the internal emission, and the intensity of the scattering
in the µ direction. Iλ(y,µ, t) is the monochromatic radiation intensity, and
Ib,λ (T (y, t)) is the monochromatic intensity of the blackbody at the tem-
perature T , given by Planck’s law as

Ib,λ(T )= C1

ñ2
λ ·λ5 ·

[
exp

(
C2

λ·ñλ·T
)

−1
] (11)

where C1 and C2 are two constants of radiation;

C1 =1.1910×10−16 W ·m2 · sr−1 and C2 =1.4388×10−2 m ·K

The index of refraction ñλ refers to the medium bounding the blackbody
and is close to one (ñλ ≈1). The investigated fibrous insulation is made of
silica fibers and air with a preponderance of air. The silica density (ρglass)
is equal to 2500 kg · m−3, and the investigated fibrous insulation density
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(ρ) is equal to 20 kg ·m−3. Thus, the volume fraction fv =ρ/ρglass =0.008;
then, we can assume, for the investigated fibrous insulation, a refractive
index of the bounding medium is close to one.
The monochromatic extinction coefficient is

βλ =σaλ +σsλ (12)

where the monochromatic absorption coefficient σaλ and the monochro-
matic scattering coefficient σsλ are cited in Ref. 5 (calculated results deter-
mined from the MIE theory) and described in Figs. 3 and 4. Wavelengths
between 2.5 and 25 µm are considered in order to cover a temperature
range between 1300 K and room temperature. Due to the highly forward
scattering phase function of silica fiber, the scattering phase function is
given by the Delta-Eddington approximation [2]:

�λ

(
µ′ →µ

) = 2fλδ (1− cos θ)+ (1−fλ) (1+A cos θ)

= 2fλδ (1−µ)+ (1−fλ) (1+Aµ) (13)

where δ (x) is the delta function and fλ is the forward scatting factor. The
modified scattering phase function of porous media is described through
the reformulation approach developed by Joseph and Wiscombe [8]. Then
the modified scattering phase function is given by �λ

(
µ′ →µ

) = 1 + Aµ.

Fig. 3. Scattering coefficients versus wavelength.
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Fig. 4. Absorption coefficients versus wavelength.

The parameter A is nominally taken to be 1. A detailed explanation of
this is given in Ref. 2.

In the MIE theory, the model applied for the determination of radi-
ative properties of a medium depends on optical parameters (the complex
optical index of fibers) and on morphological parameters (diameter and
distribution of fibers, density of the medium). In other words, different
materials that have different optical parameters will have different radia-
tive properties from the MIE theory. As a consequence, different results
are obtained. It should be mentioned that the real nλ and imaginary kλ

parts of the complex index (n∗
λ =nλ − ikλ) depend on wavelength. The spe-

cific emissivity of the medium is similar to the complex optical index of
the medium since both of them depend on the wavelength. From elec-
tromagnetic theory, the complex optical index is employed to denote the
emissivity of the medium.

The monochromatic radiation intensity in each fibrous insulation
spacer is obtained by solving Eq. (10), subject to the following boundary
conditions at the bounding surfaces for the fibrous spacers, or at two foils
or a foil and solid bounding surface [9, 10]:

Iλ(yL,µ, t)= εLIb,λ (TL (yL, t))+ (1− εL) Iλ in(yL,µ, t) for 0 < µ�1 (14)

Iλ(yR,µ, t)= εRIb,λ (TR (yR, t))+ (1− εR) Iλ in(yR,µ, t) for −1�µ < 0 (15)
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where ε is the emissivity of the foil or the solid bounding surface. The emis-
sivity of the gold-coated foils has a constant value of 0.1 in the temperature
range of 293 to 903 K [1], while the emissivity of the solid surface is equal
to 0.8. These values were used throughout the entire temperature range.
Iλin is the monochromatic incident radiation intensity, and the subscripts L
and R refer to the fibrous spacers’ two bounding surfaces. Equations (1)
to (15) provide the governing equations and the most general form of the
boundary conditions and initial conditions for the numerical heat transfer
model. The assumption used at the boundary is as follows: the foil and
solid bounding surface are opaque, diffuse emitting and reflecting. Another
assumption is that the foil is isothermal since the foils are very thin in com-
parison to fibrous insulation spacers (the ratio of the thickness of the foil
to the thickness of fibrous spacers is 0.0404/3.78=0.010).

4. NUMERICAL SOLUTION OF HEAT TRANSFER MODEL

The overall solution scheme of the transient coupled equations is iter-
ative. The flow chart of the algorithm is given in Fig. 5. First, we intro-
duce the geometrical, thermal, and radiative data, and then we construct
a mesh. Starting with the initial temperature field at a time t =0, the solu-
tion of RTE Eq. (10) for each spacer region based on the finite difference
method is calculated. The radiant heat flux variation Qr and the radia-
tive source term Sr are determined in each spacer region at the time t =0,
and then Sr is used in the governing conservation of energy Eq. (1) for
obtaining the temperature distribution at succeeding times in the entire
medium. In the following section, the solution of RTE and the conserva-
tion of energy equation are introduced.

4.1. Numerical Solution of RTE

The RTE defines a coupled system of nonlinear integro-differential
questions where the unknowns are the monochromatic radiation intensity
and the temperature field. There is no known analytical solution to this
equation. A finite difference method based on a discretization of the medium
is utilized in the solution of RTE. RTE discretization involves three distinct
problems: the angular, space, and spectral discretizations [11].

4.1.1. Angular Discretizations

The angular space is divided into m sectors and
{
µj

}m

j=1 denote the
discrete angular directions where 0 < µj �1 for 1� j �m

/
2 and µj =

−µm+1−j for m
/

2+1� j �m.
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Fig. 5. Flow chart for the solution of coupled equations.
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4.1.2. Space Discretizations

The space discretizations with the previous angular discretizations are
considered the spatial domain [0,El ] and are divided into Ns + 1 equal
intervals of length �y. A mesh of Ns +2 points between [0,El ] is consid-
ered, so yi = i ×�y for 0� i �Ns +1.

4.1.3. Spectral Discretizations

We also considered the spectral discretizations of RTE, which must be
solved for each wavelength λ. For the required resolution, we account for
the contribution of all significant wavelengths λk (1� k �Nλ).

Finally, we need to solve the following discretized set of equations:

µj

Iλk

(
yi+1,µj , t

)− Iλk

(
yi−1,µj , t

)

2�y

=σaλk

(
µj

)
Ib,λ (T (yi, t))−βλ

(
µj

)
Iλk

(yi,µj , t)

+
Nλ∑
k=1

m∑
j=1

Cλk,j Iλk

(
yi,µj , t

)
(16)

where the coefficient Cλk,j takes into account the scattering factors and
the integration weights. In this study the integration weights, �λ and σsλ,
are functions of µ and λ. It should be mentioned that 1/c∂Iλ (y,µ, t)/∂t

in Eq. (10) can be neglected due to the large value of c. In this study,
Nλ =211, m=25, and Ns =44 for the four interior fibrous insulation spac-
ers, and Ns =22 for the two outer fibrous insulation spacers.

4.2. Numerical Solution of Conservation of Energy Equation

In the present study, a finite volume form of the conservation of
energy equation is utilized. After discretizing the domain and applying the
energy balance to a finite volume, and assuming non-uniform spacing and
temperature dependent properties, we get

(
ρi−1Cp,i−1

�yi−1

2
+ρiCp,i

�yi

2

)
T (yi, t +�t)−T (yi, t)

�t

= k
(
T

(
yi−1, t +�t

))

�yi−1

(
T

(
yi−1, t +�t

)−T (yi, t +�t)
)

+k (T (yi, t +�t))

�yi

(
T

(
yi+1, t +�t

)−T (yi, t +�t)
)

+Sr (yi, t +�t)�yi (17)
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The subscript defines the spatial location of the nodes. Equation (17) is
the most general form of the governing conservation of energy equation
in a finite volume form. When the radiative source term Sr (yi, t +�t)

is known, the energy Eq. (17) can be solved. For this application, �t is
constant and is equal to 0.5 s.

4.3. Iteration Convergence

The convergence criterion for the solution of the coupled system of
equations is met when the coupled temperature behavior satisfies the fol-
lowing expression:

max
1�i�nt

∣∣∣∣
T (yi, t +�t)−T (yi, t)

T (yi, t +�t)

∣∣∣∣� ε (18)

where ε has a given strictly positive real value. In this application, the con-
vergence criterion is equal to 10−6, namely, ε =10−6.

5. NUMERICAL RESULTS AND DISCUSSION

In order to evaluate the performance of the MTI and its function
as a component of a metallic thermal protection system, the MTI was
located between the 3.24 mm thick Inconel plate and an aluminum plate
of the same thickness, while the 13.14 mm thick silica insulation with a
density of 20 kg · m−3 was installed between the aluminum plate and the
water-cooled plate. The silica insulation was made of randomly oriented
silica fibers with a diameter of 7 µm. A schematic of the MTI test instal-
lation is shown in Fig. 6. This installation simulated the actual situation
of the metallic thermal protection system with MTI at the reentry aerody-
namic heating conditions. The Inconel panel served as the hot-side solid
boundary, while the aluminum plate represented the launch vehicle struc-
ture. The aluminum plate is made of Aluminum-T2024, while the Inconel
panel is made of Inconel alloy 718. Thermophysical properties of the Inc-
onel panel and the aluminum plate are given in Ref. 12.

The heat transfer model for the non-gray conditions in this study
is compared with that for the gray. They are different in their model-
ing for radiation heat transfer. To compare numerical results for cou-
pled heat transfer in non-gray MTI with those obtained by the two-flux
model, the model using the two-flux method is introduced in the following
section.
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Fig. 6. Schematic of multilayer thermal insulation evaluating installation.

5.1. Introduction of the Model Using the Two-Flux Method

The governing conservation of energy equation for the problem of
combined radiation and conduction in a radiation participating media
with a thickness E bounded by two solid surfaces at specified temper-
atures is given in Eqs (1) to (5). The assumptions used in the two-flux
formulation consist of isotropic scattering, homogeneous and gray media,
and diffuse emitting and reflecting surfaces. The radiant heat flux is given
by [12]

Qr (y, t)=− 1
3β

∂G(y, t)

∂y
(19)

where β is the extinction coefficient and G is the incident radiation. The
incident radiation in each fibrous spacer is obtained by solving the follow-
ing second-order differential equation:

− 1
3β2 (1−ω)

∂2G(y, t)

∂y2
+G(y, t)=4σT 4 (y, t) (20)

where ω is the scattering albedo, defined as the ratio of the scatter-
ing coefficient and extinction coefficient. This is subject to the following
boundary conditions at the bounding surfaces for the fibrous spacers, or
at two foils, or at a foil and solid bounding surface:
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− 2

3β
(

εL

2−εL

) ∂G(yL, t)

∂y
+G(yL, t)=4σT 4 (yL, t) (21)

2

3β
(

εR
2−εR

) ∂G(yR, t)

∂y
+G(yR, t)=4σT 4 (yR, t) (22)

where ε is the emissivity of a foil or a solid bounding surface, σ is
the Stefan-Boltzmann constant, and the subscripts L and R refer to the
fibrous spacers’ two bounding surfaces. Eqs (1) to (5) and Eqs (19) to (22)
provide the governing equations and the most general form of the bound-
ary conditions and initial conditions for the numerical heat transfer model.

For comparison of the results obtained for non-gray fibrous insula-
tion with those of assumed gray fibrous insulation by appropriate numeri-
cal models, the silica fibrous insulation is assumed to be grey. The two-flux
method can be used for the fibrous insulation assuming gray media. The
two parameters of the two-flux approximation, the extinction coefficient β

and the scattering albedo ω for the silica fibrous insulation, must be eval-
uated. They are average values and are determined by [2, 9, 13]

β =
∫ λmax

λmin

βλdλ

/
(λmax −λmin) (23)

ω=
∫ λmax

λmin

σsλdλ

/∫ λmax

λmin

βλdλ (24)

5.2. Steady-State Results

For obtaining the steady-state calculated results, the numerical solu-
tion was advanced in time until steady-state conditions were achieved.
At steady state, the effective thermal conductivity was calculated from
Fourier’s law of heat conduction using the calculated total steady-state
heat flux (including both radiative and conductive heat fluxes) and the
imposed temperature difference across the MTI. The comparison of results
obtained using the numerical model in this study and those obtained
using the two-flux model effective thermal conductivities for the multilayer
sample is shown in Fig. 7.

In simulating steady-state coupled heat transfer in multilayer insula-
tion using the numerical model, the simulated Inconel panel and
water-cooled plate temperatures were used for the boundary conditions.
At steady state, a comparison of temperature profiles vs. depth for the
multilayer sample obtained using the numerical model in this study and
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Fig. 7. Comparison of numerical model in this study and two-flux
model for effective thermal conductivity of multilayer insulation.

obtained using the two-flux model is shown in Fig. 8. As shown in Figs 7
and 8, the difference is obvious, especially at high temperature. Com-
pared with the effective thermal conductivities and temperature profiles vs.
depth obtained using the two-flux model, the predictions using the numer-
ical model in this study are higher by a maximum of 23.7% and 7.9%,
respectively.

5.3. Transient Results

In simulating the transient coupled heat transfer in multilayer insu-
lation using the numerical model, the simulated temporal variations of
the Inconel panel and water-cooled plate temperature were used for
the boundary conditions. The temporal variations of the Inconel panel
temperature that could be achieved in simulating re-entry conditions
are shown in Fig. 9, along with the corresponding desired radiation
equilibrium temperature for typical re-entry profiles. The water-cooled
plate temperature was maintained around room temperature (300 K). The
predictions from the numerical model of this study and those obtained
by using the two-flux formulation temperatures of the aluminum panel
and one point of the multilayer insulation (distance from bottom of the
Inconel panel is 16.38 mm) are shown in Fig. 9. At times less than 1000 s,
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Fig. 8. Comparison of numerical model in this study and
two-flux model for temperature profiles vs. depth at steady state.

Fig. 9. Comparison of numerical mode1 of this study and
two-flux model for transient multilayer insulation.
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when the Inconel panel temperature increases with a large gradient, the
difference between the temperature of the aluminum panel obtained with
the numerical model in this study and the two-flux numerical model is
enormous, but the temperature obtained with the numerical model of this
study is lower. However, between 1000 and 2500 s the temperature of the
aluminum panel obtained with the numerical model of this study is higher
than that obtained with the two-flux formulation, and the difference still is
large.

As shown in Fig. 9, the difference between the aluminum panel’s
temperature predicted by using the numerical model in this study and
that obtained by using the two-flux formulation has an average value of
19.25 K (the former is 455.55 K and the latter is 436.30 K; and the highest
temperatures are 458.25 K and 437.35 K, respectively), which shows that if
a non-gray fibrous layer is treated as a gray medium in the metallic ther-
mal protection system, it will give unreliable results in insulation design.

6. OPTIMIZATION OF MTI

The theoretical model was developed to optimize the design of the
MTI. The model parameters include the emissivity of the foils, the num-
ber of screens and their locations, the spacer material, the thickness of
the spacer material, and the total thickness of the insulation as well as
the maximum temperature of the insulation surface. If the fibrous spacer
is optically thick, the reflectance of the foils will not have any apprecia-
ble effect on the overall radiation heat transfer. Therefore, except for the
distance between the screens, the effect of the emissivity of the foils on
the effective thermal conductivity of the MTI should be considered. In
this section, results about the optimum MTI configuration, i.e., the emis-
sivity of the foils and their locations, are discussed in order to obtain
simple design rules. The multilayer insulation discussed above has been
employed again; however, only the gold-coated foils have been replaced
with the various metal-coated ceramic substrate foils in order to investi-
gate the effect of the emissivity of the foils on the effective thermal con-
ductivity of the MTI. In the present discussion, a numerical experiment
refers to a numerical solution of the governing heat transfer equations for
the thermal design problem described in the previous section using model
parameters. For each set of numerical experimental conditions, the emis-
sivity of the foils is variable, while other model parameters are constant.
The temperatures of the Inconel panel and water-cooled plate were used
for the boundary conditions, which were 800 and 300 K, respectively. The
numerical solution was advanced in time until steady-state conditions were
achieved. The relationship between the number of foils and their locations
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Table I. Relationship between Number of Foils and Their Locations

Number of
Foils 1 2 3 4 5

Location of Foils
(distance from the
bottom of Inconel
panel, mm)

1.8 5.62 9.44 13.26 15.10

Table II. Results of Design of Experiment Analysis

Emissivity of foils Temperature
of aluminum

Trial number Foil 1 Foil 2 Foil 3 Foil 4 Foil 5 panel (K)

1 0.1 0.6 0.6 0.6 0.1 386.54
2 0.1 0.6 0.6 0.6 0.2 378.69
3 0.1 0.6 0.6 0.6 0.6 374.98

is shown in Table I. The effect of the emissivity of the foils on the tem-
perature of the aluminum panel is reported in Table II.

A comparison of trials 1, 2, and 3 shows that the temperature of
the aluminum panel near the steel alloy-coated foil (ε = 0.6) is the low-
est while the temperature of the aluminum panel near the gold-coated foil
(ε = 0.1) is the highest, and the temperature of the aluminum panel near
the ceramic foil (ε = 0.2) falls between these two values. This is due to
the absorption and re-emission properties of the foils, namely, foils with
a higher reflectance (lower emissivity) have a stronger effect on the alumi-
num panel than foils with a lower reflectance with the same temperature
in an optically thick space.

The cost of the gold-coated reflective foils is extremely high com-
pared to the cost of the steel alloy-coated foils and silica fibrous insula-
tion. Therefore, the present numerical experiment can be used in future
studies to provide insights regarding the costs and benefits of the MTI.

7. CONCLUDING REMARKS

(a) A numerical model developed for modeling the transient cou-
pled radiative and conductive heat transfer in the MTI which consists
of non-gray semitransparent materials and reflective foils is investigated
for metallic thermal protection systems subjected to re-entry aerodynamic
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heating. The numerical result is compared with the numerical result
obtained from the two-flux method for gray materials. It was found that
the effective thermal conductivities predicted in this study are larger than
those obtained by using the two-flux formulation, which shows that if a
numerical model for gray media is used for non-gray media, it could give
less heat flux than it should, and as a consequence, may cause design
problems and subsequent equipment failure.

(b) A numerical model is used to determine the optimum design spec-
ifications for multilayer insulation subjected to re-entry aerodynamic heat-
ing. It was found that the use of a steel alloy-coated foil (ε = 0.6) near a
cooler aluminum panel would result in an effective insulation design.
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